151 research outputs found

    Plantes transgèniques i agricultura: present i futur

    Get PDF
    planta transgènica, resistència a plagues, tolerància a estrès, resistència a Des de la seva comercialització a mitjan anys noranta, el cultiu de varietats transgèniques ha crescut de manera continuada fins avui dia. Cal destacar, però, que aquests conreus corresponen majoritàriament a varietats transgèniques de soja, blat de moro, cotó i colza resistents a insectes o herbicides. El cultiu de plantes transgèniques modificades en altres característiques representa encara una proporció molt petita en relació amb les indicades anteriorment. Els avenços en les tècniques de transformació genètica i en els coneixements adquirits en diversos aspectes de la biologia de les plantes ha possibilitat la generació d'un gran nombre de plantes transgèniques modificades no solament en noves característiques d'interès agronòmic, sinó també en altres aspectes, com ara propietats nutricionals millorades o la producció de compostos d'interès industrial o farmacèutic. Malgrat que aquestes varietats transgèniques no s'han comercialitzat, algunes podrien arribar a tenir un impacte important en l'agricultura del futur.Since their introduction in the mid 90's the cultivation of transgenic crops have been increasing until now. It must be stressed however that most of these crops correspond to transgenic varieties of soybean, maize, cotton and rapeseed resistant to insects and/or herbicides. The cultivation of transgenic plants modified in other traits is relatively low as compared to those indicated above. The advances in plant gene transformation technologies and on the knowledge of new aspects related with plant biology have set the basis for the generation of transgenic plants modified not only in new agronomic traits but also in aspects like nutritional quality or the production of compounds with pharmaceutical and industrial interest. In spite that these transgenic plants have not been commercialized some of them could have a relevant impact in agriculture

    A hydrophobic proline-rich motif is involved in the intracellular targeting of temperature-induced lipocalin

    Get PDF
    Temperature-induced lipocalins (TILs) play an essential role in the response of plants to different abiotic stresses. In agreement with their proposed role in protecting membrane lipids, TILs have been reported to be associated to cell membranes. However, TILs show an overall hydrophilic character and do not contain any signal for membrane targeting nor hydrophobic sequences that could represent transmembrane domains. Arabidopsis TIL (AtTIL) is considered the ortholog of human ApoD, a protein known to associate to membranes through a short hydrophobic loop protruding from strands 5 and 6 of the lipocalin β-barrel. An equivalent loop (referred to as HPR motif) is also present between β-strands 5 and 6 of TILs. The HPR motif, which is highly conserved among TIL proteins, extends over as short stretch of eight amino acids and contains four invariant proline residues. Subcellular localization studies have shown that TILs are targeted to a variety of cell membranes and organelles. We have also found that the HPR motif is necessary and sufficient for the intracellular targeting of TILs. Modeling studies suggest that the HPR motif may directly anchor TILs to cell membranes, favoring in this way further contact with the polar group of membrane lipids. However, some particular features of the HPR motif open the possibility that targeting of TILs to cell membranes could be mediated by interaction with other proteins. The functional analysis of the HPR motif unveils the existence of novel mechanisms involved in the intracellular targeting of proteins in plants

    Structural and functional analysis of tomato sterol C22 desaturase

    Get PDF
    Background: Sterols are structural and functional components of eukaryotic cell membranes. Plants produce a complex mixture of sterols, among which β-sitosterol, stigmasterol, campesterol, and cholesterol in some Solanaceae, are the most abundant species. Many reports have shown that the stigmasterol to β-sitosterol ratio changes during plant development and in response to stresses, suggesting that it may play a role in the regulation of these processes. In tomato (Solanum lycopersicum), changes in the stigmasterol to β-sitosterol ratio correlate with the induction of the only gene encoding sterol C22-desaturase (C22DES), the enzyme specifically involved in the conversion of β-sitosterol to stigmasterol. However, despite the biological interest of this enzyme, there is still a lack of knowledge about several relevant aspects related to its structure and function. Results: In this study we report the subcellular localization of tomato C22DES in the endoplasmic reticulum (ER) based on confocal fluorescence microscopy and cell fractionation analyses. Modeling studies have also revealed that C22DES consists of two well-differentiated domains: a single N-terminal transmembrane-helix domain (TMH) anchored in the ER-membrane and a globular (or catalytic) domain that is oriented towards the cytosol. Although TMH is sufficient for the targeting and retention of the enzyme in the ER, the globular domain may also interact and be retained in the ER in the absence of the N-terminal transmembrane domain. The observation that a truncated version of C22DES lacking the TMH is enzymatically inactive revealed that the N-terminal membrane domain is essential for enzyme activity. The in silico analysis of the TMH region of plant C22DES revealed several structural features that could be involved in substrate recognition and binding. Conclusions: Overall, this study contributes to expand the current knowledge on the structure and function of plant C22DES and to unveil novel aspects related to plant sterol metabolism

    Oxygen consumption and lipoxygenase activity in isolated tomato fruit chromoplasts

    Get PDF
    This Study using purified tomato fruit chromoplasts has shown significant rates of oxygen consumption even in the absence of external precursors. Oxygen consumption rates increased up to 7-fold when chromoplast samples were incubated for 24 h at room temperature. This increase in oxygen consumption is most likely due to the activation of lipoxygenase in the chromoplasts

    Antibody repertoire in paraneoplastic cerebellar degeneration and small cell lung cancer

    Get PDF
    The goal of this study is to determine whether patients with paraneoplastic cerebellar degeneration (PCD) and small-cell lung cancer (SCLC) have a specific repertoire of antibodies, if SOX1 antibodies (SOX1-ab) can predict the presence of SCLC, and if antibodies to cell surface antigens occur in this syndrome. Antibody analysis was done using immunohistochemistry on rat brain, immunoblot with recombinant antigens, screening of cDNA expression libraries, and immunolabeling of live neurons in 39 patients with PCD and SCLC. VGCC-ab were measured by RIA, and SOX1-ab, Hu-ab, and ZIC4-ab by immunoblot. Lambert-Eaton myastenic syndrome (LEMS) was present in 10 of 23 patients with electrophysiological studies. At least one antibody was detected in 72% of patients. The individual frequencies were: 49% SOX1-ab, 44% VGCC-ab, 31% Hu-ab, and 13% ZIC4-ab. SOX1-ab occurred in 76% of patients with VGCC-ab and 27% of those without VGCC-ab (p = 0.0036). SOX1-ab were not found in 39 patients with sporadic late-onset cerebellar ataxia, 23 with cerebellar ataxia and glutamic acid decarboxylase antibodies, and 73 with PCD and cancer types other than SCLC (31 without onconeural antibodies, 25 with Yo-ab , 17 with Tr-ab). Five patients (13%) had antibodies against unknown neuronal cell surface antigens but none of them improved with immunotherapy. One serum immunoreacted against the axon initial segment of neurons and another serum against ELKS1, a protein highly expressed in the cerebellum that interacts with the beta4-subunit of the VGCC. In conclusion, 72% of patients with PCD and SCLC had one or more antibodies that indicate the presence of this tumor. In these patients, VGCC-ab and SOX1-ab occur tightly associated. SOX1-ab are predictors of SCLC in ataxia patients with a specificity of 100% and sensitivity of 49%. Unlike limbic encephalitis with SCLC, antibodies to cell surface antigens other than VGCC-ab, are infrequent and do not predict response to treatment

    Inactivation of UDP-Glucose Sterol Glucosyltransferases Enhances Arabidopsis Resistance to Botrytis cinerea

    Get PDF
    Altres ajuts: Universitat Jaume I (UJI-B2016-43)Free and glycosylated sterols are both structural components of the plasma membrane that regulate their biophysical properties and consequently different plasma membrane-associated processes such as plant adaptation to stress or signaling. Several reports relate changes in glycosylated sterols levels with the plant response to abiotic stress, but the information about the role of these compounds in the response to biotic stress is scarce. In this work, we have studied the response to the necrotrophic fungus Botrytis cinerea in an Arabidopsis mutant that is severely impaired in steryl glycosides biosynthesis due to the inactivation of the two sterol glucosyltransferases (UGT80A2 and UGT80B1) reported in this plant. This mutant exhibits enhanced resistance against B. cinerea when compared to wild-type plants, which correlates with increased levels of jasmonic acid (JA) and up-regulation of two marker genes (PDF1.2 and PR4) of the ERF branch of the JA signaling pathway. Upon B. cinerea infection, the ugt80A2;B1 double mutant also accumulates higher levels of camalexin, the major Arabidopsis phytoalexin, than wild-type plants. Camalexin accumulation correlates with enhanced transcript levels of several cytochrome P450 camalexin biosynthetic genes, as well as of their transcriptional regulators WRKY33, ANAC042, and MYB51, suggesting that the Botrytis-induced accumulation of camalexin is coordinately regulated at the transcriptional level. After fungus infection, the expression of genes involved in the indole glucosinolate biosynthesis is also up-regulated at a higher degree in the ugt80A2;B1 mutant than in wild-type plants. Altogether, the results of this study show that glycosylated sterols play an important role in the regulation of Arabidopsis response to B. cinerea infection and suggest that this occurs through signaling pathways involving the canonical stress-hormone JA and the tryptophan-derived secondary metabolites camalexin and possibly also indole glucosinolates

    Tomato UDP-glucose sterol glycosyltransferases: A family of developmental and stress regulated genes that encode cytosolic and membrane-associated forms of the enzyme

    Get PDF
    Sterol glycosyltransferases (SGTs) catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom) SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic acid and methyl jasmonate

    Inactivation of UDP-glucose sterol glucosyltransferases enhances Arabidopsis resistance to Botrytis cinerea

    Get PDF
    Free and glycosylated sterols are both structural components of the plasma membrane that regulate their biophysical properties and consequently different plasma membrane-associated processes such as plant adaptation to stress or signaling. Several reports relate changes in glycosylated sterols levels with the plant response to abiotic stress, but the information about the role of these compounds in the response to biotic stress is scarce. In this work, we have studied the response to the necrotrophic fungus Botrytis cinerea in an Arabidopsis mutant that is severely impaired in steryl glycosides biosynthesis due to the inactivation of the two sterol glucosyltransferases (UGT80A2 and UGT80B1) reported in this plant. This mutant exhibits enhanced resistance against B. cinerea when compared to wild-type plants, which correlates with increased levels of jasmonic acid (JA) and up-regulation of two marker genes (PDF1.2 and PR4) of the ERF branch of the JA signaling pathway. Upon B. cinerea infection, the ugt80A2;B1 double mutant also accumulates higher levels of camalexin, the major Arabidopsis phytoalexin, than wild-type plants. Camalexin accumulation correlates with enhanced transcript levels of several cytochrome P450 camalexin biosynthetic genes, as well as of their transcriptional regulators WRKY33, ANAC042, and MYB51, suggesting that the Botrytis-induced accumulation of camalexin is coordinately regulated at the transcriptional level. After fungus infection, the expression of genes involved in the indole glucosinolate biosynthesis is also up-regulated at a higher degree in the ugt80A2;B1 mutant than in wild-type plants. Altogether, the results of this study show that glycosylated sterols play an important role in the regulation of Arabidopsis response to B. cinerea infection and suggest that this occurs through signaling pathways involving the canonical stress-hormone JA and the tryptophan-derived secondary metabolites camalexin and possibly also indole glucosinolate

    Respiratory processes in non-photosynthetic plastids

    Get PDF
    Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids
    corecore